Vai al contenuto principale
Oggetto:
Oggetto:

Matematica e Principi di Statistica

Oggetto:

Mathematics and Principles of Statistics

Oggetto:

Anno accademico 2024/2025

Codice attività didattica
SAF0390
Docenti
Alessandro Portaluri (Affidamento interno)
Riccardo Tione (Affidamento interno)
Corso di studio
[001717] SCIENZE E TECNOLOGIE AGRARIE
Anno
1° anno
Periodo
Primo semestre
Tipologia
A - Di base
Crediti/Valenza
6
SSD attività didattica
MAT/05 - analisi matematica
Erogazione
Convenzionale
Lingua
Italiano
Frequenza
Facoltativa
Tipologia esame
Scritto
Prerequisiti

1. Logica elementare e linguaggio degli insiemi
2. Aritmetica di base ed elementi di calcolo combinatorio: combinazioni, disposizioni e permutazioni (semplici e con ripetizioni).
3. Proporzioni e percentuali. Concentrazioni di soluzioni. Notazione scientifica. Propagazione degli errori nelle misure indirette. Approssimazioni
4. Funzioni di una variabile reale e grafico di una funzione. Funzioni crescenti e decrescenti. Massimi e minimi. Funzioni pari/dispari e simmetrie dei loro grafici. Creazione di nuovi grafici a partire da grafici noti
5. Equazioni e disequazioni algebriche elementari.
6. Equazioni e disequazioni esponenziali e logaritmiche. pH di una soluzione
7. Equazioni e disequazioni trigonometriche. Risoluzione dei triangoli. Teorema dei seni e Teorema di Carnot. Calcolo della pendenza topografica.
8. Elementi di geometria piana e solida

1. Introduction to logic and naive set theory
2. Arithmetic and combinatorial calculus: dispositions, combinations and permutations
3. Proportions and percentages. Concentrations of chemical solutions. Scientifica notation
4. One variable functions. Increasing and decreasing functions. Local and global extrema. Even and odd functions and their graphs. New graphs from by known graphs.
5. Algebraic equations
6. Exponential and Logarithm equations. pH of a chemical solution
7. Trigonometric equations. Carnot theorem, sine theorem. An application in topografy
8. Basics of planar and solid geometry


Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

Scopo dell'insegnamento è

  • Fornire  i metodi e gli strumenti matematici di base che devono far parte delle competenze di qualunque laureato in una disciplina scientifica
  • Motivare  nello studio di questa disciplina, attraverso l'analisi di applicazioni concrete

  • Fornire gli strumenti statistici di base che verranno utilizzati nell'analisi dei dati di ogni esperienza di laboratorio.

Gli argomenti sono introdotti nel modo più elementare possibile, tentando di ridurre al minimo il numero di prerequisiti ed in ogni caso evitando una presentazione eccessivamente astratta. 

 

The aim of the course is

  • To introduce  the basic concepts of differential and integral calculus

  • To introduce the basic concepts of descriptive and inferential Statistics

  • To give  the basic mathematical tools as well as an abstract thinking for understand and solving problems coming from other different areas.

Oggetto:

Risultati dell'apprendimento attesi

Al termine dell'insegnamento gli studenti e le studentesse saranno in grado di

Conoscenza e capacità di comprensione

  • Risolvere  semplici problemi di natural pratica o trasversali ad altre discipline (quali ad esempio la biologia, la chimica, la fisica e l'economia)
  • Applicare metodologie tipiche dell'analisi infinitesimale per la risoluzione di problemi di ottimizzazione
  • Conoscere i concetti di base della Statistica descrittiva e inferenziale.

Conoscenza e capacità di comprensione applicate

  • Analizzare un problema
  • Individuare le strutture astratte presenti in alcuni problemi reali
  • Elaborare adeguate strategie di soluzione
  • Elaborare dei dataset  per un'analisi statistica.

Autonomia di giudizio

  • essere in grado di valutare la strategia e la tecnica risolutiva più adeguata alla risoluzione di un problema applicato

 Abilità comunicative

  • utilizzare una corretta terminologia e un linguaggio tecnico-scientifico adeguato alla trattazione delle tematiche apprese

Capacità di apprendere

  • leggere, comprendere e distinguere ipotesi e tesi all'interno di un quadro assiomatico stabilito

 

Knowledge and understanding

The course provides students with the basis of the scientific method common to all experimental disciplines, together with a significant choice of topics in classical physics. The course will enable students to

 Applying knowledge and understanding

  • Proper understanding of simple problems
  • Finding the abstract math structures behind a problem
  • Elaborate a strategy for solving the problem
  • Analyzing data sets and data analysis

Making judgements

  • Ability of evaluating the best stategy for an elementary applied problem solving

 Communication skills

The course will enable students to use an appropriate scientific language.

 Learning skills

  • reading, understanding the difference between hypothesis and thesis in a appropriate axiomatic framework

 

Oggetto:

Programma

 

 

 PARTE I

  • [2 Lezioni --- Capitolo 3 (BMPa) + Capitolo 7 (BMPb)] Aritmetica di base ed elementi di calcolo combinatorio: combinazioni, disposizioni e permutazioni (semplici e con ripetizioni)
  • [2 Lezioni Capitolo 4 (BMPa)] Proporzioni e percentuali. Concentrazioni di soluzioni. Notazione scientifica. Propagazione degli errori nelle misure indirette. Approssimazioni
  • [1 Lezione --- Capitolo 10 (BMPa)] Equazioni e disequazioni algebriche elementari
  • [1 Lezione --- Capitolo 11 (BMPa)] Equazioni e disequazioni esponenziali e logaritmiche. pH di una soluzione
  • [1 Lezione --- Capitolo 12 (BMPa)] Equazioni e disequazioni trigonometriche. Risoluzione dei triangoli. Teorema dei seni e Teorema di Carnot.  Calcolo della pendenza topografica.

PARTE II

  • [3 Lezioni --- Capitolo 3 (BMPb)] FUNZIONI ELEMENTARI
  • [2 Lezioni --- Capitolo 4 (BMPb)] LIMITI E COMPORTAMENTI ASINTOTICI
  • [3 Lezioni --- Capitolo 5 (BMPb)] LE DERIVATE E LE LEGGI DEL CAMBIAMENTO. STUDIO DI FUNZIONE E PROBLEMI DI OTTIMIZZAZIONE
  • [2 Lezioni --- Capitolo 6 (BMPb)] INTEGRALE SECONDO RIEMANN

PARTE III

  • [4 Lezioni --- Capitoli 7 e 8 (BMPb)] PROBABILITÀ ELEMENTARE, VARIABILI ALEATORIE E DISTRIBUZIONI
  • [4 Lezioni --- Capitolo 9 (BMPb)] STATISTICA DESCRITTIVA E INFERENZIALE
  • [3 Lezioni (BMPb)] STATISTICA INFERENZIALE
  • [2 Lezioni] USO DI EXCEL

 

 

 

 PART I

  • [2 Lectures --- Chapter 3 (BMPa) + Chapter 7 (BMPb)] Arithmetic  and Combinatorial Calculus
  • [2 Lectures --- Chapter 4 (BMPa)] Proportions and percentages. Scientific notation. Errors propagations and approximation
  • [1 Lecture --- Chapter 10 (BMPa)] Algebraic equations and inequalities
  • [1 Lecture --- Chapter 11 (BMPa)] Logarithmic and exponential equations. pH of a solution
  • [1 Lecture --- Chapter 12 (BMPa)] Trigonometric equations and inequalities. Carnot and sine Theorems. 

PARTE II

  • [3 Lectures --- Chapter 3 (BMPb)] ELEMENTARY FUNCTIONS
  • [2 Lectures --- Chapter 4 (BMPb)] LIMITS AND ASIMPTOTIC BEHAVIOURS
  • [3 Lectures --- Chapter 5 (BMPb)] DERIVATIVES AND APPLICATIONS
  • [2 Lectures --- Chapter 6 (BMPb)] DEFINITE AND INDEFINITE  INTEGRALS

PARTE III

  • [4 Lectures --- Chapters 7 e 8 (BMPb)] PROBABILITY, RANDOM VARIABLES AND DISTRIBUTIONS
  • [4 Lectures --- Chapter 9 (BMPb)] DESCRIPTIVE STATISTICS
  • [3 Lectures (BMPb)] INFERENTIAL STATISTICS
  • [2 Lectures] EXCEL SOFTWARE

 

Oggetto:

Modalità di insegnamento

L'insegnamento è costituito da  

  • 60 ore di lezioni frontali durante le  quali vengono trattati tutti gli argomenti in programma

Per favorire la comprensione, i concetti presentati vengono applicati alla discussione di applicazioni di carattere fisico, chimico, biologico ed economico. Per le lezioni frontali il docente si avvale di presentazioni e di materiale multimediale disponibile  sulla piattaforma di E-learning Moodle UniTo.

La frequenza è facoltativa ma fortemente consigliata.

 

The course is through

  • lectures for 60 hours where all items stated in the program will be introduced. The most relevant concepts are applied for investigating some  specific problems coming from physics, biology and so on and so forth.

Many applications to applied sciences will be provided during the lectures.  Slides as well as other digital support will be available to students on a elearning platform.

Attending the course is strongly recommended although not mandatory.

 

Oggetto:

Modalità di verifica dell'apprendimento

La  struttura della prova scritta, consiste nella risoluzione di

  • Un test a risposta multipla costituito da 8 domande delle quali 4 relative ai capitoli 2,3, 4, 8, 9, 10, 11 del  “Precorso di matematica” [BPMa] e le restanti 2 relative ai capitoli 8, 9 del testo di “Matematica per le Scienze” [BPMb]
  • Due esercizi aperti ciascuno costituito da più punti: Un esercizio obbligatorio [O] estratto dagli esercizi di riepilogo o dagli esercizi svolti contenuti nei capitoli 3 o 4 del  “Precorso di matematica” [BPMa] e un esercizio facoltativo [F] estratto dagli esercizi di riepilogo o dagli esercizi svolti contenuti nei capitoli (capitoli 8 e 9 del testo [BPMb]). L'esercizio [O], pur non contribuendo alla votazione finale, è  OBBLIGATORIO e costituisce uno sbarramento al superamento dell'esame. Il mancato svolgimento, ovvero una risoluzione errata dell'esercizio, preclude il superamento dell'esame anche in presenza di un test con 10 risposte corrette su 10.

Ogni  quiz a risposta multipla prevede 4 possibili risposte di cui una sola  corretta. Le risposte vengono valutate come segue:

  • risposta corretta: +3
  • risposta non data: 0
  • risposta errata: -1

Il punteggio massimo dell'esercizio [F] è di 5 punti. 

La votazione finale della prova è determinata, esclusivamente, dalla somma dei punteggi riportati nel test a risposta multipla e nel punteggio riportato nell'esercizio facoltativo.

 

 

 

The final exam splits into two parts:

  • A multiple choices questions about chapters 2,3, 4, 8, 9, 10, 11 of the textbook “Precorso di matematica” [BPMa] and 2 about chapters 8, 9 of the textbook “Matematica per le Scienze” [BPMb]
  • Two exercises: one which is mandatory [O] and extracted from  Chapters  3 or 4 of the textbook  “Precorso di matematica” [BPMa] and one which is optional [F] extracted from  Chapters  8 or 9  of the textbook   [BPMb].

Each quiz in the text has 4 possible answers but only one is correct. Each quiz is evaluated as follows:

  • correct choice: +3
  • no answer : 0
  • wrong choice: -1

The maximal score for the exercise [F]  is 5 points.

La final mark is the sum of the score of the test and the exercise [F].

 

 

Oggetto:

Attività di supporto

L' erogazione dell'insegnamento è convenzionale. Oltre alle lezioni frontali verrà fatto un uso importante della piattaforma di e-learning Moodle UniTo.

RICEVIMENTO

L'orario di ricevimento  sarà  calendarizzato in aula e si riferisce esclusivamente al periodo in cui viene erogato l'insegnamento. 

In tutti gli altri periodi didattici, ad esclusione delle sessioni d'esame, si potrà richiedere un appuntamento, mandando un'email all'indirizzo:

matematica_portaluri@unito.it

dal proprio indirizzo istituzionale (e non da indirizzo email privato). Non utilizzare l'indirizzo del docente prof. Alessandro Portaluri.

The course is a standard course. Apart from the classes there will be a massive use of the Moodle E-learning platform as well as of the MyLab Pearson associated to the reference book, for improving  the soft skills.   

APPOINTMENT

During the first semester there will be scheduled some  weekly appointment with students for discussing about theoretical questions and open problems. 

In the second semester (except during  exams breaks) students could get an appointment by sending an email to: matematica_portaluri@unito.it by their own institutial email account.

 

Testi consigliati e bibliografia



Oggetto:
Libro
Titolo:  
[BMPb] Matematica per le scienze con elementi di probabilità e statistica
Anno pubblicazione:  
2022
Editore:  
Pearson
Autore:  
Stefano Barbero; Sunra J. Mosconi; Alessandro Portaluri
ISBN  
Obbligatorio:  
No


Oggetto:
Libro
Titolo:  
[BPMa] Precorso di Matematica
Anno pubblicazione:  
2022
Editore:  
Pearson
Autore:  
Stefano Barbero - Sunra Mosconi - Alessandro Portaluri
ISBN  
Obbligatorio:  
No


Oggetto:

Note

  1. Gli studenti sono invitati, non appena in possesso delle credenziali SCU e della passwd che verrà fornita dal docente a lezione, ad iscriversi al corso presente sulla piattaforma Moodle
  2. Si farà un utilizzo esclusivo del libro di testo e della piattaforma MyLab Pearson associata
  3. Nel programma l'acronimo (BPMa) e (BPMb) si riferisce a ciascuno dei testi consigliati tra le referenze.

  1. The students are kindly invited to register to the course "Matematica" on Moodle  as soon as they got the SCU credentials and the passwd of the course. 
  2. Lectures are strictly based on the reference book.
  3. In shorthand notation, we used (BPMa)  and (BPMb) for identifying one of the two books apperaring in the references.

Oggetto:
Ultimo aggiornamento: 03/10/2024 16:48
Location: https://www.sta.unito.it/robots.html
Non cliccare qui!